A note on the budgeted maximization of submodular functions

نویسندگان

  • Andreas Krause
  • Carlos Guestrin
چکیده

Many set functions F in combinatorial optimization satisfy the diminishing returns property F{A U X) — F(A) > F(A' U X) — F(A') for A C A!. Such functions are called submodular. A result from Nemhauser etal. states that the problem of selecting ^-element subsets maximizing a nondecreasing submodular function can be approximated with a constant factor (1 — 1/e) performance guarantee. Khuller etal. showed that for the special submodular function involved in the MAX-COVER problem, this approximation result generalizes to a budgeted setting under linear nonnegative cost-functions. In this note, we extend this result to general submodular functions. Motivated by the problem of maximizing entropy in discrete graphical models, where the submodular objective cannot be evaluated exactly, we generalize our result to account for absolute errors. University L i ' . ^ne* Carnegie Mellon 11 * : v Pittsburgh, PA 15;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-document Summarization via Budgeted Maximization of Submodular Functions

We treat the text summarization problem as maximizing a submodular function under a budget constraint. We show, both theoretically and empirically, a modified greedy algorithm can efficiently solve the budgeted submodular maximization problem near-optimally, and we derive new approximation bounds in doing so. Experiments on DUC’04 task show that our approach is superior to the bestperforming me...

متن کامل

Budgeted stream-based active learning via adaptive submodular maximization

Active learning enables us to reduce the annotation cost by adaptively selecting unlabeled instances to be labeled. For pool-based active learning, several effective methods with theoretical guarantees have been developed through maximizing some utility function satisfying adaptive submodularity. In contrast, there have been few methods for stream-based active learning based on adaptive submodu...

متن کامل

Amplified Hardness of Approximation for VCG-Based Mechanisms

If a two-player social welfare maximization problem does not admit a PTAS, we prove that any maximal-in-range truthful mechanism that runs in polynomial time cannot achieve an approximation factor better than 1/2. Moreover, for the k-player version of the same problem, the hardness of approximation improves to 1/k under the same two-player hardness assumption. (We note that 1/k is achievable by...

متن کامل

A Reduction for Optimizing Lattice Submodular Functions with Diminishing Returns

A function f : ZE+ → R+ is DR-submodular if it satisfies f(x+χi)−f(x) ≥ f(y+χi)−f(y) for all x ≤ y, i ∈ E. Recently, the problem of maximizing a DR-submodular function f : ZE+ → R+ subject to a budget constraint ‖x‖1 ≤ B as well as additional constraints has received significant attention [6, 7, 5, 8]. In this note, we give a generic reduction from the DR-submodular setting to the submodular se...

متن کامل

Submodular Function Minimization and Maximization in Discrete Convex Analysis

This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005